
INTRODUCTION

Let be the symmetric group on letters, be a space, and be
the orbit space of the action on by permuting the coordinates.
If = { } is a spectrum with structure maps : +1, then

is the spectrum { ( ) }, where :
is defined by ( ( 1 )) = ( 1 ). Let 0 denote the -
fold symmetric product of the sphere spectrum. There is a natural inclusion

0 +1 0 by sending extra coordinate to base point. Let ( )
be the cofiber of the diagonal map : 2 1 0 2 0. Let ( ) =

( ( ) ( 1)). Let ( ) = ( 2 0 2 1 0). Mitchell and
Priddy [1] showed that ( ) = ( ) ( 1). For further details the
reader may consult [1]. Thus we study on ( ). James, Thomas, Toda and
Whitehead [3] showed that 1 2 0 0 ' . Here we show that the
connective -theory of ( ) splits into copies of 2 for = 2 3.

Here and throughout, all spaces are localized at prime 2, e ( ) means
the reduced mod 2 cohomology of , 2 is the cyclic group of order 2, is
the mod 2 Steenrod algebra, and = 0 1 is the exterior algebra,
which is a subalgebra of , generated by 0 =

1 and 1 =
3 + 2 1.

For the convenience, we denote for 2 .

Johnson and Wilson [4] showed that e ( ) = as
-module, and ( ) ' (

W
dim 2) ( ),

where each is in the basis of the free -module , and correspon-

des to the generators of . Inductively we can see that (
V

) '
(
W

2) ( ) for some appropriate families of and cor-

responding respectively to the generators of each splitting of e (V )
as -module. Similarly Yan [6] showed that ( ) ' (W 2)

(
W

) (
W

) for some appropriate families of , , and

corresponding respectively to the generators of each splitting of e ( ( ))
as -module. Moreover, Mitchell and Priddy [1] showed that ( ) is a sta-

ble summand of both ( ) and
V

, and so is ( ). Thus ( )

should split and this splitting might depend on the splitting of e ( ( )).
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Let = . Recall Johnson and Wilson’s work [4] to split
. First split e ( ) into and a free part as -module. Secondly

construct a space such that e ( ) = ( 2) . The third step is
to determine such that e (W 2) = ( 2) = . The

last isomorphism is followed by the Proposition 1.7 of Liulevicius [5]. Finally
construct the homotopy equivalence of and (

W
2) ( ).

Now we just let = ( ) for = 2 3, and follow the steps above. First
we show

Theorem 1. e ( (2)) is a free -module.

Then we have

Corollary 1. (2) ' 2 where = 2 + 4 + 2 for 2
2 + 1 0.

Let be the admissable element of with length and is the generator

of e1(× ) for = 1 · · · . Mitchell and Priddy [1] showed that ( ) is

a stable summand of × , and the 2-basis of e ( ( )) embedded in
e (× ) is { ( 1

1 · · · 1)}. Since ( ) is a summand of ( ), and
generators of e ( ( )) are { 1}, the 2-basis of e ( ( ))
embedded in e (× ) is { ( 1

1 · · · 1) | 1}. We compute the
generator ( 1

1 · · · 1) for 1 here. Let 1 0, +1, =

( =1 +1 1
=1 +1 · · · 2

=1 +1 1+1), and = =1 +1 · · · 1+1.
Note that 1 = 1 for dim = 1. Then

Theorem 2. ( 1
1 · · · 1) = =1

( ), where = ( ), ( ) =

( 1 )( ( 1 1) + ( 1 )), (1 ) = ( ), and ( ) = +1
=1

=1 =1 .

By the theorem 2, we have the generator of e ( (3)) embedded in e ( 3×
). Then we can show

Theorem 3. e ( (3)) is a free -module.
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With the analogous argument in the Corollary 1, we have

Corollary 3.1 (3) ' ( 2 ) ( 2) where =
2 +4 +6 +2 for 2 2 +2 +1 and 2 +1 2 0, and = 2 ’+4 ’+6 ’+3
for 2 ’ 2 ’+2 ’+1 and 2 ’ 2 ’+1 0.

Since (3) = (3) (2), we have

Corollary 3.2 (3) ' ( 2 ) ( 2) ( 2)
where = 2 + 4 + 6 + 2 for 2 2 + 2 + 1 and 2 + 1 2 0, =
2 ’+4 ’+6 ’+3 for 2 ’ 2 ’+2 ’+1 and 2 ’ 2 ’+1 0, and = 2 "+4 "+2
for 2 " 2 "+1 0.
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